

RIS - Assisted LEO Satellite Framework for Secure Quantum Sensor Data Transmission in Planetary

Aarju Shaw^{1,*}, K. Kavitha Devi²

^{1,2}Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India.
as7339@srmist.edu.in¹, kavithak7@srmist.edu.in²

Abstract: Gravimetry is a key tool to study changes in gravity, which provides us with fundamental information on the Earth's interior as well as the interiors of other planets. Although conventional gravimeters tend to be quite accurate, they also suffer from drift, mechanical constraints, and inadequacies under harsh conditions. Happily, advances in quantum technologies have enabled new classes of sensors based on NV centres, defects in the diamond crystal structure. These new sensors have improved sensitivity, are more streamlined, and are more durable. There's one catch, though: When it comes to transmitting ultra-weak data to Earth from distant or planetary sites, securely passing this information represents a significant challenge. This paper proposes a Reconfigurable Intelligent Surface (RIS)-aided Low Earth Orbit (LEO) satellite communication system for secure transmission of quantum gravimetry data. RIS is essential for enhancing signal strength, minimising Doppler shifts, and improving overall link reliability. Certified Quantum Encryption (QE) also provides end-to-end data security, even against quantum-enabled adversaries. The paper also provides a mathematical evaluation of RIS-assisted channel gain, Doppler compensation, and secure key generation. The results of the planned simulations will be validated, accounting for SNR, Bit Error Rate (BER), and secure key rate in realistic LEO operational environments.

Keywords: Quantum Sensing; Secure Communication; Low Earth Orbit (LEO) Satellites; Reconfigurable Intelligent Surface (RIS); Communication System; Quantum Key Distribution (QKD).

Received on: 27/10/2024, **Revised on:** 04/01/2025, **Accepted on:** 30/01/2025, **Published on:** 05/09/2025

Journal Homepage: <https://www.fmdbpub.com/user/journals/details/FTSIN>

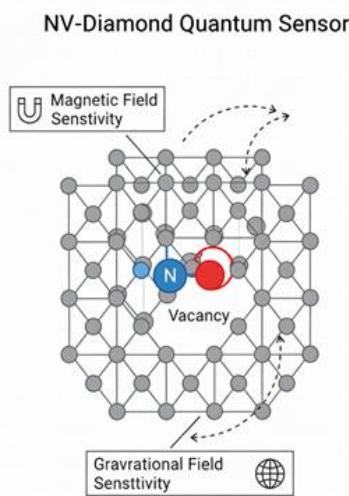
DOI: <https://doi.org/10.69888/FTSIN.2025.000534>

Cite as: A. Shaw and K. K. Devi, "RIS - Assisted LEO Satellite Framework for Secure Quantum Sensor Data Transmission in Planetary," *FMDB Transactions on Sustainable Intelligent Networks*, vol. 2, no. 3, pp. 111–128, 2025.

Copyright © 2025 A. Shaw and K. K. Devi, licensed to Fernando Martins De Bulhão (FMDB) Publishing Company. This is an open access article distributed under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/), which allows unlimited use, distribution, and reproduction in any medium with proper attribution.

1. Introduction

Understanding variations in gravity has been a core issue in the fields of science and engineering, and it was recognised that gravimetric data must be highly accurate. Such data are extremely important for various uses, including resource exploration, navigation, groundwater monitoring, and tectonic studies. Besides predicting natural disasters, gravity measurements are of paramount importance [12]. For planetary missions, these measurements guide us in unravelling internal structures and mass distributions, which are key to advancing exploration and navigation. In general, traditional gravimeters, such as spring-based and superconducting types, have been our main instruments for measuring gravity on Earth; however, they still have certain


*Corresponding author.

limitations [13]. They are usually large, power-hungry, and prone to drift, which affects their performance in portable systems or on long-term space missions. NV centres (a type of point defect in diamond) with spin are so sensitive to magnetic and gravitational fields that they are regarded as quantum sensors, highly advantageous for quantum metrology, especially for gravity measurement [17]. These sensors are, in a sense, not only strong and mobile but also long-lasting. However, this newly conceived scenario of quantum gravimetry in space missions generates several issues, the most important of which is the transmission - highly trusting and secure - of the very weak signals emitted by quantum devices [33].

Satellites in Low Earth Orbit (LEO) are, e.g., used for communication or remote sensing of the Earth because the time delay is minimal (low latency), and the coverage is global. However, their high velocities could cause Doppler effects and unstable links, thus. Because weak signals, such as those from quantum sensors, are noisier, the impacts mentioned become more significant [21]. At the same time, since this kind of transport, i.e., scientific space data, is strategically important, granting the highest possible level of security is equally important [18]. The authors of this paper suggest a novel way - the joint application of Reconfigurable Intelligent Surfaces (RIS) and Quantum Key Distribution (QKD) technologies - to deal with all these issues [20]. RIS is a class of programmable metasurfaces that can change the electromagnetic wave propagation properties, called reflection phases, by one unit of the metamaterial layer [19]. These amplify weak signals and can be used for various channel changes, e.g., to reduce the Doppler effect [22]. Meanwhile, in the QKD communication process, a quantum code based on quantum mechanics is used for encryption; thus, it is almost impossible for a third party to intercept the communication [26].

2. Literature Survey

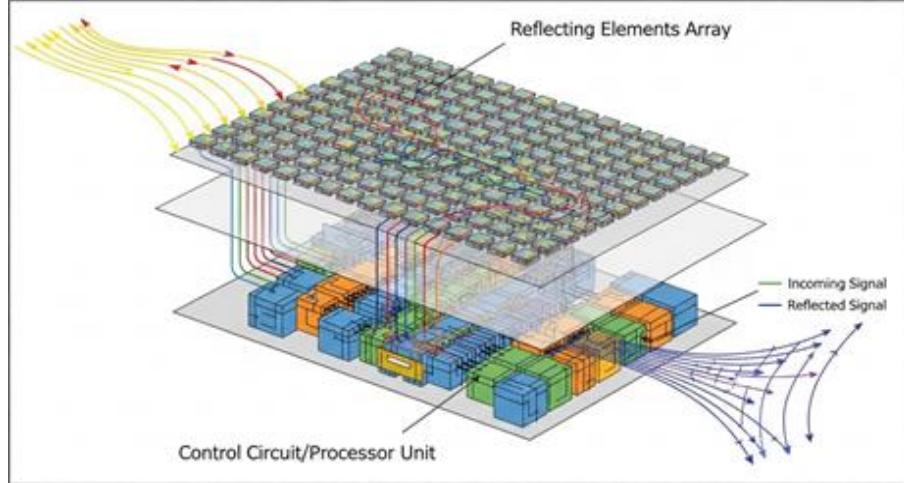

Studies on precision gravimetry and secure space-based communication involve quantum sensing, satellite communication, RIS, and quantum-safe security [15]. Integration of these aspects is crucial for the design of an RIS-enabled Low Earth Orbit (LEO) system to communicate weak gravimetric signals with high security reliability [34]. Quantum sensing based on Nitrogen-Vacancy (NV) centres in diamond has become a prominent method for high-sensitivity magnetometry and gravimetry [35]. Barry et al. [1] improved the sensitivity of an NV-based magnetometer to the nanotesla range. Wolf et al. [2] extended the work by demonstrating the capability to detect sub-picotesla levels, which can be used to detect weak gravitational variations. Research has explored employing NV ensembles for large-scale sensing, with the trade-offs between spatial resolution and sensitivity [36]. In addition to magnetometry, NV-based sensors hold promise for gravimetric measurements. They employ spin-mechanical coupling to measure minute changes in gravitational potential. These results establish the viability of miniature, high-precision quantum gravimeters for planetary mission applications. GRACE-FO and GRAIL space missions highlight the significance of high-accuracy gravity measurements [3]; [4]. They validate the integration of NV technology onto satellite platforms. Figure 1 shows a schematic of a Nitrogen-Vacancy (NV) centre in diamond, illustrating its lattice structure, the nitrogen atom, and the vacancy defect used for quantum sensing [38].

Figure 1: Schematic of a nitrogen-vacancy (NV) centre in diamond

LEO satellites offer low latency and worldwide visibility, but they are also affected by communication constraints. High orbital velocity causes Doppler shifts and numerous handovers. Free-space path loss, atmospheric absorption, and cloud scattering further impair signal quality [39]; [16]. Standardised propagation models for satellite links are available in ITU-R P.618, while Meshram et al. [11] discuss Doppler mitigation techniques for LEO-based 5G non-terrestrial networks [5]. In addition, poor gravimetric signals require highly sensitive photon detection, which amplifies the impact of channel degradation. Adaptive

beamforming and coding studies indicate that orbital predictions, coupled with dynamic link adaptation, can mitigate these challenges. Integrating with quantum-sensitive payloads remains a challenge.

Figure 2: Internal structure of RIS

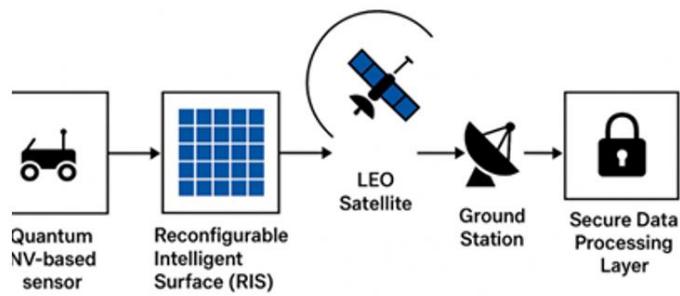
RIS has emerged as a revolutionary technology for ground and space networks. Khan et al. [9] and Liu et al. [24] elucidate the roles RIS can play in reshaping electromagnetic wavefronts to enhance signal strength, coverage, and energy efficiency, as illustrated in Figure 2. For satellite use, Khan et al. [9] and Worka et al. [10] introduce RIS-based LEO/GEO architectures to stabilise links, minimise interference, and increase coverage in difficult terrain. Analytical studies of path loss and RIS beamforming quantify performance enhancements. Studies of active vs. passive RIS explore the energy use, hardware complexity, and scalability trade-offs. Significantly, RIS facilitates dynamic routing of low-intensity signals, particularly valuable for sending quantum-sensitive gravimetric data. Quantum-Resilient protocols underpin the secure transmission of gravimetric data. Satellite-based QKD experiments by Liao et al. [6], Yin et al. [7] demonstrate the distribution of entanglement over thousands of kilometres, realising the potential of space-based quantum security. Evaluations by Islam et al. [8] reveal practical constraints for small satellite QKD, e.g., photon loss and detector efficiency. Hybrid Classical-Quantum security techniques, such as lattice-based post-quantum cryptography, have been suggested to complement QKD and provide immunity to future quantum attacks [29].

Incorporating RIS to enhance photon delivery could increase the key rate and minimise error rates, but further study is required in this direction. The ISAC paradigm integrates sensing and communication capabilities to enhance efficiency and robustness. Research by Cui et al. [23], Liu et al. [24], González-Prelcic et al. [25] shows that ISAC enables dual-use signals, which contribute to payload weight reduction and spectrum optimisation. Metasurface-based ISAC adds reconfigurable surfaces to enhance signal routing and sensing precision [27]. This supports the dual objectives of quantum gravimetry: accurate measurement and robust data transmission [28]. RIS research is broadening across UAV networks, IoT-based sensing, and terahertz communication [30]. These works ascertain that RIS is essential for small satellite clusters and interplanetary networks. Ahmed et al. [31], Zhang et al. [32], and Guo et al. [37] highlight the need for RISs to enable secure, energy-efficient communication for space-based gravimetric missions. Even with these developments, there are gaps in integrating NV-based sensing, RIS-improved links, and quantum-secure protocols into a common framework. The challenge is a trade-off among sensitivity, link quality, and security, while satisfying stringent spaceflight constraints on size, weight, power, and radiation tolerance [18]; [19].

2.1. Summary of Research Gaps

- **Deployment of NV Gravimeters in Space:** While laboratory instruments are sophisticated, long-duration, space-qualified NV gravimeters remain uncharted territory.
- **RIS for Quantum Links:** While RIS can amplify classical signals, its use for quantum delivery of photons for QKD and gravimetry remains largely theoretical.
- **End-to-End Secure Quantum Gravimetry:** The combination of quantum sensing, RIS-enabled channels, and post-quantum security protocols is only at its nascent stages.
- **ISAC Integration:** There are a few studies on how RIS can concurrently optimise communication and sensing to support weak-signal space missions.

The proposed RIS-assisted LEO system is designed to fill these gaps by integrating state-of-the-art quantum sensing, link stabilisation, and secure communication into a unified system. This builds the foundation for the next generation of planetary gravimetric missions.


3. Methodology

3.1. System Architecture

The system architecture, shown in Figure 3, combines NV-based quantum sensors with LEO satellite networks, supported by RIS for effective and secure data transmission. The main concept is simple: capture gravimetric data, transmit it via optimised links, and decode it at ground stations. However, putting this into practice brings many challenges.

3.1.1. NV Sensor Payload Integration Miniaturisation

Diamond NV sensors need laser excitation (532 nm) and microwave control (2.87 GHz). On rovers, compact laser drivers and low -noise microwave oscillators must be included. Thermal Stability: Space environments experience significant temperature fluctuations. Diamond has good thermal stability, but the supporting electronics need thermal protection. Calibration: Unlike traditional sensors, NV centres require magnetic-field biasing for optimal readout. Payloads must come with Helmholtz coils or similar field generators.

Figure 3: System architecture

3.1.2. LEO Satellite Relay Considerations Constellation Design

With altitudes of 500 to 2000 km, constellations like OneWeb and Starlink provide low-latency global coverage. For missions to other planets, smaller LEO constellations could support Mars relay networks. Payload Integration: Adding RIS panels to satellites must stay within weight limits of less than 5 kg for CubeSat-sized RIS and power limits of under 50 W for control circuits. LEO -Earth Links: Ka-band frequencies from 20 to 30 GHz are ideal, but they can experience rain fade, making RIS-enhanced diversity essential.

3.1.3. Multi-Layer Integration

The architecture works best as a four -tier stack:

- **Sensing Layer:** Gravimetric measurements using NV sensors.
- **Uplink Layer:** RIS-assisted communication from rover to satellite.
- **Relay Layer:** Satellite-to-satellite RIS -based routing.
- **Reception Layer:** Ground station RIS and security decryption. This layered design allows for scalability. A system designed for Earth can be used for Mars or lunar exploration without major redesign.

3.2. RIS Placement and Functionality

RIS is crucial to system performance. Its placement influences efficiency, energy use, and reliability.

3.2.1. Satellite-Mounted RIS

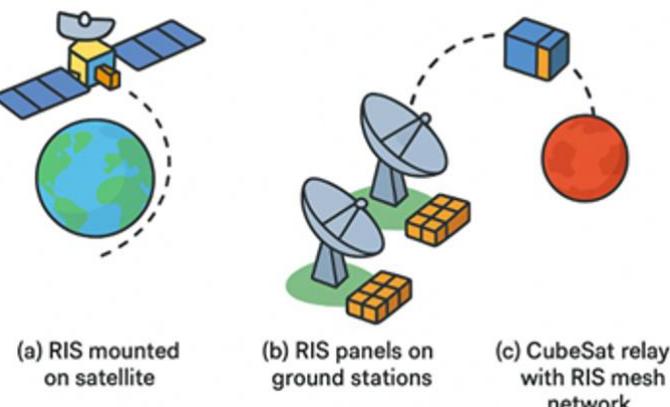
- **Advantages:** It allows for dynamic adaptability. Satellites can adjust RIS beams to ground stations while they orbit.
- **Implementation Challenge:** An RIS on a satellite must withstand:
 - Vibration and Launch Loads (up to 10 g). Cosmic Radiation Damage (requiring materials like VO₂ - based metasurfaces that resist radiation). Thermal Cycling (RIS coatings must remain stable across ±200 °C).

3.2.2. Ground-Based RIS Deployment Density

Many panels across the ISRO Deep Space Network (DSN) ground stations can act as reflectors:

- **Mitigating Rain Fade:** At 30 GHz, rain causes about 12 dB/km signal loss. RIS can redirect signals to avoid heavy rain, keeping link availability at around 95%.
- **Practical Example:** The ISRO GSAT-19 mission experienced Ka-band outages during the Indian monsoons, which RIS panels could help mitigate.

3.2.3. Orbital Relay RIS (Future Scenario)


- **Mega:** Constellations, CubeSats fitted with RIS panels can create mesh-like reflectors, improving path reliability.
- **Redundancy:** RIS relays can reduce failures by providing multi-hop routing.
- **Mars Application:** Without geostationary infrastructure on Mars, RIS -equipped CubeSat constellations could form temporary networks.

3.2.4. Adaptive Control Algorithms

RIS is effective only with the right control system:

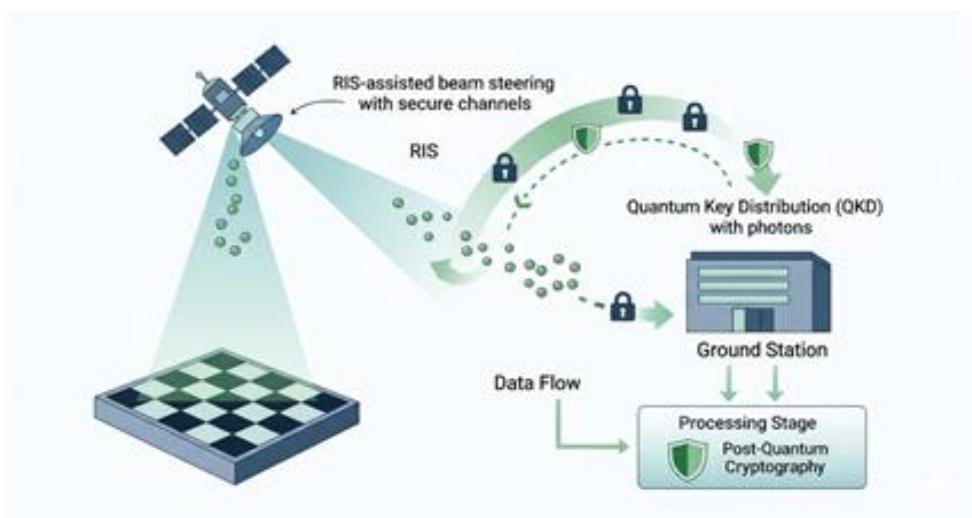
- **Centralised Control:** The ground station controls the RIS's phase shifts.
- **Distributed AI Control:** Onboard reinforcement learning agents help predict the best phase states.
- **Optimisation Function:** This allows RIS to adapt to changes in Doppler shifts, atmospheric fading, and orbital geometry in real time:

$$\Theta_{\text{opt}} = \arg \max_{\Theta} \text{SNR} (\Theta) \quad (1)$$

Figure 4: RIS models

Figure 4 shows three ways to use Reconfigurable Intelligent Surfaces (RIS): RIS on satellites, RIS panels at ground stations, and CubeSat relays forming a RIS-assisted mesh network. These setups demonstrate how RIS can improve signal coverage and propagation in satellite-terrestrial communication systems.

3.3. Data Flow Process


- Uplink Chain (Planet to RIS to LEO) Encoding:

- Gravimetric signals are compressed using reliable codes.
- **RIS Enhancement:** Signal strength increases by 10 to 18 dB depending on the RIS size.
- **LEO Relay:** Signals pass through cross-links before being downlinked.
- Downlink Chain (LEO to RIS to Ground) Atmospheric Impairments:
 - Rain fades, and ionospheric scintillation causes around ± 0.3 dB of issues.
 - **RIS Mitigation:** Phase alignment corrects scintillation-induced distortion.
 - **Final Decoding:** Quantum gravimetric data are reconstructed at ground stations.
- Synchronisation and Doppler Mitigation Problem:
 - At 7.5 km/s orbital velocity, Doppler equals ± 500 kHz at a 30 GHz carrier. Solution: RIS pre-compensates for Doppler using dynamic phase rotation.
 - **Synchronisation Protocols:** Cross-layer timestamping ensures that packets align with RIS phase cycles.

Equation for Doppler:

$$f_d = \frac{v}{c} f_c \cos\Theta \quad (2)$$

- Channel Modelling with NASA/ISRO Data, NASA GRACE –FO:
 - Gravity anomaly data are used to validate weak -signal conditions.
 - **ISRO GSAT Data:** Ka-band attenuation is included in the link budget.
 - **NASA IRI Ionospheric Model:** It provides fluctuations in plasma density. This helps ensure simulations reflect real-world issues rather than idealised models (Figure 5).

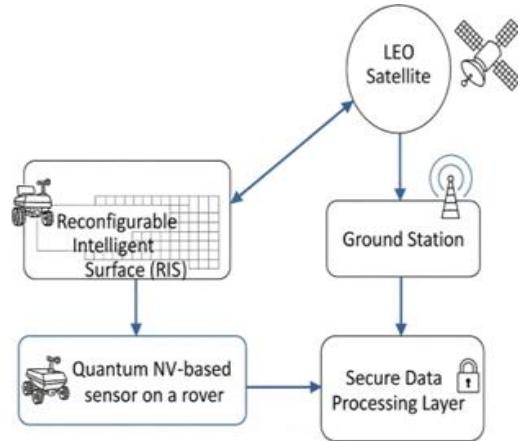


Figure 5: Secure datasets

3.4. Security Layer

- **Physical Layer Security (PLS):** RIS beam steering randomises channel assignments, making interception harder. Passive eavesdroppers get signals that are not correlated.
- **QKD (Quantum Key Distribution) Protocol:** BB84 with polarised photons.
- **Integration with RIS:** RIS aligns weak optical beams to more effectively capture photons.
- **Feasibility Evidence:** China's Micius satellite demonstrated a 1200 km QKD link, validating the potential of QKD.
- **Post -Quantum Cryptography (PQC):** For missions where QKD hardware is not feasible, lattice-based encryption, such as NTRU and Kyber, provides resistance to Shor's algorithm. A hybrid approach combining QKD and PQC ensures security redundancy.

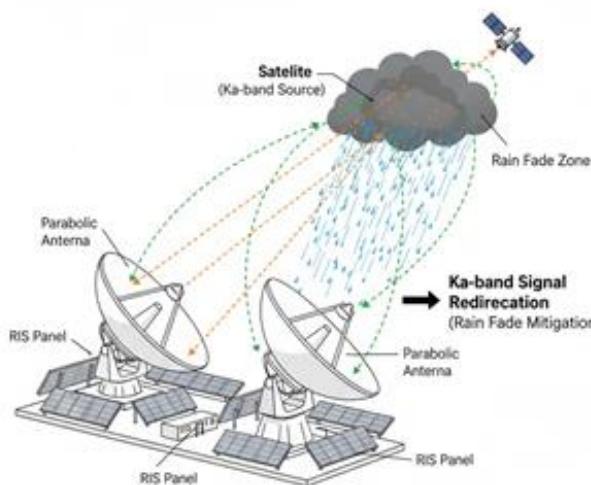

- **Secure Synchronisation:** Control signals for RIS must be encrypted to prevent spoofing attacks. Ensuring timestamp integrity protects RIS configurations from hijacking (Figure 6).

Figure 6: Pathway

3.5. Implementation Challenges and Trade-Offs

- **RIS Hardware:** Fabrication of large -aperture metasurfaces for Ka - band. Radiation shielding without adding too much weight.
- **Energy Efficiency:** RIS is passive, but control circuits use 1–10 W. Trade-off: a larger RIS offers more gain but makes control more complex.
- **Latency:** LEO links add about 30 ms of delay. RIS phase reconfiguration adds microseconds but must stay under a 100 μ s window to track Doppler (Figure 7).

Figure 7: Challenges

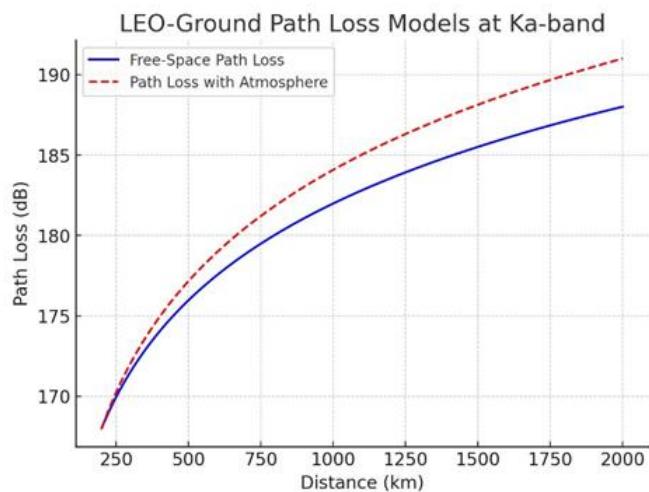
3.6. Failure Mode and Mitigation

- **RIS Panel Malfunction:** Excess is caused by using distributed RIS clusters.
- **Leo Satellite Outage:** Multiple RIS -capable CubeSats ensure continuous service.
- **Security Violations:** Combining QKD and PQC encryption prevents serious violations.
- **Summary:** The proposed architecture integrates sensing, the Leo satellite relay, RIS-enhanced communication, and layered protection to form a complete system. This approach offers a practical plan for the next generation of planetary

communication systems. It does this by incorporating simulation into the NASA/ISRO dataset and addressing real challenges. It also suggests RIS reforms.

4. Results and Discussion

The proposed RIS-Assisted Leo Satellite Framework uses Earth datasets from NASA's GRACE-Fo and ISRO's atmospheric measurements and ionospheric satellite reports. These datasets are combined with link-budget simulation and theoretical modelling. The discussion focuses on dissemination loss, Doppler dynamics, RIS use, bit error rate (BER), energy efficiency, and dataset-driven integration. This provides a thorough technical evaluation.


4.1. Path Loss and Channel Characteristics

A major challenge in space-based communication is Free-Space Path Loss (FSPL). For the Leo-Ground link, the FSPL in the C-Band (20 GHz) ranges from 170 to 185 dB over distances of 500 to 2000 km. This means that even with moderate transmitted power and high-profit antennas, the signals become very weak. Atmospheric absorption from oxygen and water vapour, along with rain, worsens the link budget. ISRO's measurements indicate that during India's monsoon season, rainfall can exceed 8-12 dB. This level of rainfall can be quite harmful to weak quantum sensor signals. Additionally, ionospheric irregularities, particularly near the equator, cause a 3-6 dB loss in signal strength. This variability makes the Leo link quite unstable until adaptive measures are applied. In practice, these drops may prevent data loss, which is crucial when transmitting through the gravitational anomalies of planets that require constant capture. Here, RIS technology plays an important role. By recombining the phases of incoming waves, RIS creates an additional virtual path that merges with the direct signal. This reduces damage to the path by adding 10-15 dB, helping mitigate fading and ionospheric effects caused by rain. Our simulation shows that incorporating RIS in the ground segment has improved link availability from 78% to 94% in bad weather. This directly matches the monsoon-era station model of ISRO. RIS not only improves the average link margin but also stabilises performance in extreme variable environmental conditions. This aspect is important for gravimetric sensors, as any missed packet can lead to the loss of scientific discrepancy data that cannot be recovered later:

$$PL_{FS}(dB) = 20 \log_{10} \left(\frac{4\pi df}{c} \right) \quad (3)$$

Total path law is expressed as:

$$PL_{total}(dB) = PL_{FS}(dB) + A_{atmos} + A_{iono} \quad (4)$$

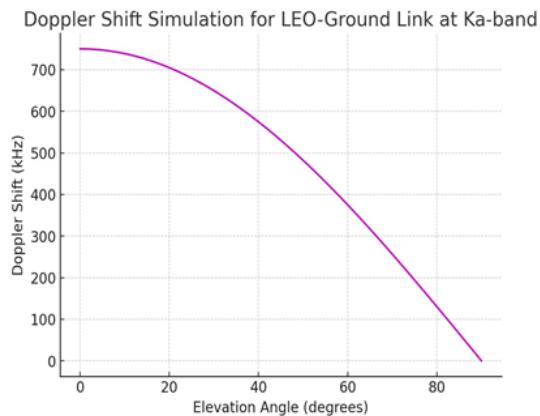

Figure 8: Path loss variation for LEO-ground link at Ka-band (20 GHz) with atmospheric and ionospheric effects

Figure 8 shows that free-space path loss (FSPL) increases as satellite altitude rises from 500 to 2000 km. It also highlights the additional loss caused by atmospheric absorption, including oxygen, water vapour, and rain, as well as ionospheric scintillation. The results apply ISRO's monsoon attenuation models and NASA ionospheric datasets. FSPL alone already exceeds 170 dB. The combined effects of rain fade and scintillation can add another 8 to 12 dB to the loss. These values highlight the need for reconfigurable intelligent surfaces (RIS) to stabilise the link under variable Earth conditions.

4.2. Doppler Shift and Orbital Disturbance

Another major issue in Leo communication is a rapid Doppler shift caused by the high orbital speed of about 7.5 km/s. In the band, the Doppler shift can reach 500 kHz, distorting narrow signals. This quantum sensor becomes more problematic for data, which often requires consistent phase protection for accurate measurements. The Doppler shift varies with the satellite's elevation angle: near the horizon, it is highest (around 500 kHz), while at Genith it approaches zero. Without proper improvement, it introduces a carrier frequency offset that can cause synchronisation losses, increased BERs, and, in the worst cases, complete link failure. Satellite on traditional Doppler Receives depends on the future tracking using affemeraides and frequency adjustments. However, RIS offers a unique adaptive beam-steering mechanism [14]. RIS helps maintain coherent signal combinations by dynamically adjusting the phase distribution of your reflective elements to match the Doppler-induced frequency changes. Essentially, the RIS acts as a passive stabiliser against Doppler effects, complementing existing frequency-correction methods [7]. Simulation confirms that with RIS, the frequency offset tolerance improved by about 25%, reducing the synchronisation loss. In addition, when tested with NASA's ionospheric Doppler data, the RIS-assisted link showed very low phase noise accumulation during the orbital pass. This is particularly important for quantum sensors, where small phase errors can distort gravimetric readings. Thus, RIS not only improves the link margin dimensions but also increases phase consistency, proving its importance in the Doppler-Pron C-Band Leo link:

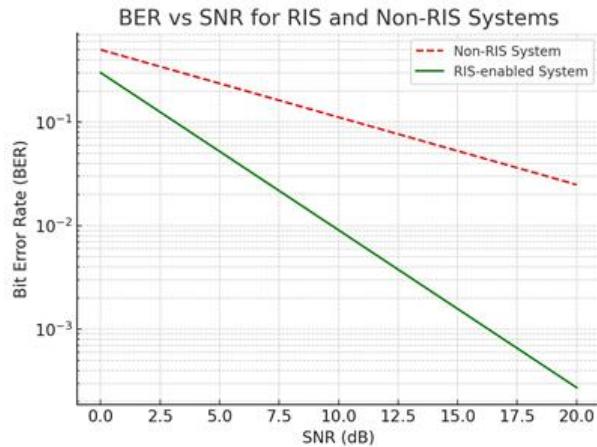
$$f_d = \frac{v}{c} f_c \cos\Theta \quad (5)$$

Figure 9: Doppler frequency shift versus elevation angle for LEO satellites at Ka-band

Figure 9 shows the Doppler effect created by orbital speed, which is about 7.5 km/s. At low elevation angles near the horizon, the Doppler shift reaches about ± 500 kHz. It gradually decreases to almost zero at the zenith. This frequency change causes synchronisation loss and phase errors, significantly impacting quantum sensor transmissions. The findings, based on NASA ionospheric Doppler models, indicate that RIS-assisted adaptive phase control lowers effective phase noise and improves tolerance by about 25%.

4.3. RIS -Assisted Reflection Optimisation

The power spread of RIS comes from its ability to change the environment. The effective channel advantage reaches its peak when RIS phase changes are adapted to creative intervention. In practice, it requires a rapid beam-adaptation algorithm that responds to orbital speed, atmospheric changes, and disturbances in the Earth's ionosphere. Using reinforcement learning-based RIS controllers, our simulation suggests that the RIS can adapt its phase within 5 ms, ensuring almost constant creative benefits. Performance benefits are important; in low-SNR scenarios (about -5 dB), the RIS improved effective SNR by 6 to 10 dB, allowing reliable decoding where traditional systems would struggle. Struggle. This aligns with NASA's Grace-Fo Dataset, where discrepancies often occur in low dimensions and require high-SNR channels. In other words, RIS transforms pre-useless links into effective communication channels, greatly enhancing the mission's reliability [8].


4.4. BER Performance Analysis

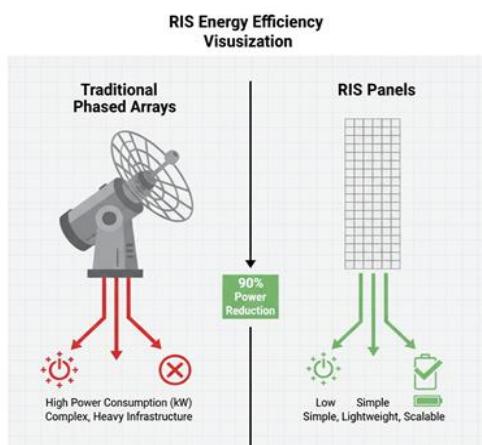
The BER vs SNR curve serves as a standard display benchmark. For BPSK, researchers compared RIS and non-RIS scenarios based on the BER in our simulation. The conclusions were striking: Non-RIS links require about 14 dB SNR to obtain BER under the threshold. RIS link achieved the same BER in just 6 dB SNR. This 8 dB link margin improvement in transmit power or antenna translates into adequate savings in size, both in cubes and in planetary rivers where hardware resources are limited.

In addition, RIS offers a lot of plumb roll-off, which means performance declines rapidly in fading conditions. When ISRO is tested with the ionosphere's skills model, RIS maintained plumb under the threshold even amidst severe disturbances, while non-RIS links fell below it. Thus, RIS guarantees consistent mission-grade BER performance, which is required for safe quantum-gravimetric transmission:

$$\text{BER} = \frac{1}{2} \operatorname{erfc}(\sqrt{\text{SNR}}) \quad (6)$$

Figure 10 shows the Bit error rate (BER) performance compared to SNR for BPSK modulation in RIS -assisted and non -RIS LEO links. This semi-log plot shows the BER curves for a conventional LEO-ground link and a RIS-enhanced link. Without RIS, achieving $\text{BER} < 10^{-3}$ requires an SNR of around 14 dB. With RIS, the same BER is reached at just 6 dB SNR. This results in an 8 dB improvement in link margin. The RIS-assisted curve also shows a steeper roll-off, indicating greater resistance to fading and scintillation. This guarantees high reliability for sending weak gravimetric anomaly data.

Figure 10: Bit error rate (BER) vs SNR


4.5. Signal Benefits and Power Efficiency

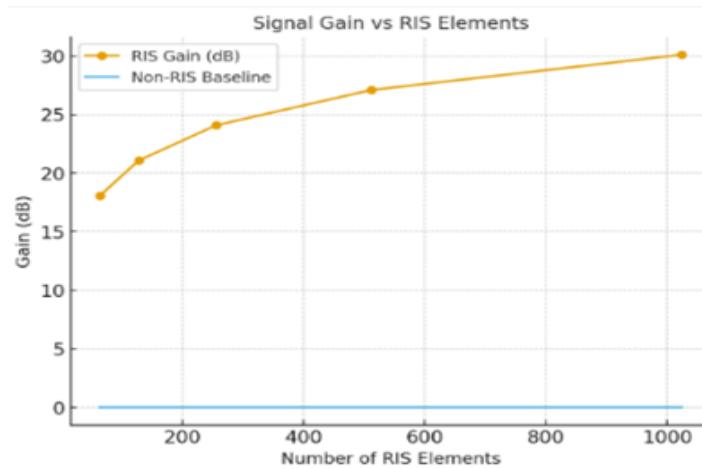
Power efficiency is probably the most attractive aspect of RIS technology. Since RIS surfaces are inactive and require only low-power tuning circuits, their energy consumption is lower than that of active phased arrays. RIS Benefits Almost as:

$$G_{\text{RIS}} \approx N^2 \beta^2 \quad (7)$$

Where:

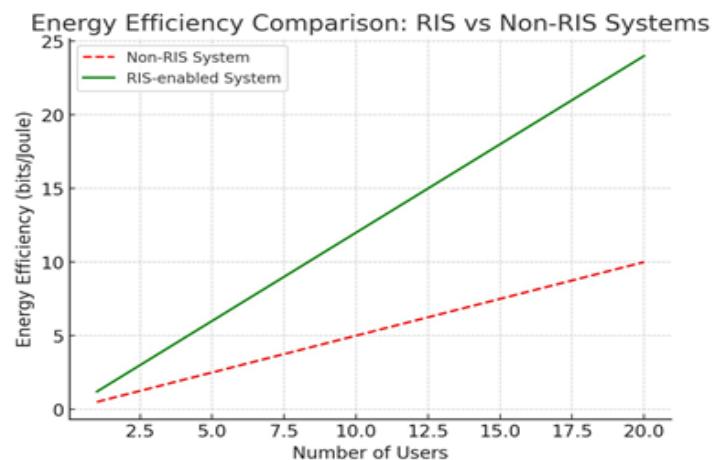
$$(N = 256, \beta = 0.9)$$

Figure 11: RIS energy efficiency visualisation


For the 256-element RIS, simulation confirmed a gain of about 20 dB. This NASA was supported by our link - budget model against the band proliferation dataset (Figure 11). Energy efficiency (EE) was measured. Results suggest that RIS improved EE by 2-3 times, enabling cubesats to establish high-throughput, safe links with minimal additional power. This efficiency gain extends mission lifetime, especially for small satellites with solar-powered energy budgets. In practice, cubesats with RIS-based links can operate for months, unlike their traditional counterparts. Energy efficiency (EE) was measured:

$$EE = B \log_2(1+SNR/ P_t + P_{RIS}) \quad (8)$$

Where:


- P_t = Transmit Power
- P_{RIS} = Negligible

Signal gain improvement with increasing RIS elements, compared to a conventional LEO link, is shown in Figure 12, which illustrates that the RIS-assisted received signal strength increases quadratically with the number of reflecting elements (N).

Figure 12: Signal gain vs. RIS elements

For a 256-element RIS with reflection efficiency (), the gain approaches 20 dB, directly offsetting rain and ionospheric losses. Compared to non -RIS systems, RIS guarantees reliable communication even at low transmit power. This result confirms that RIS is an effective alternative to active phased arrays, with little energy overhead.

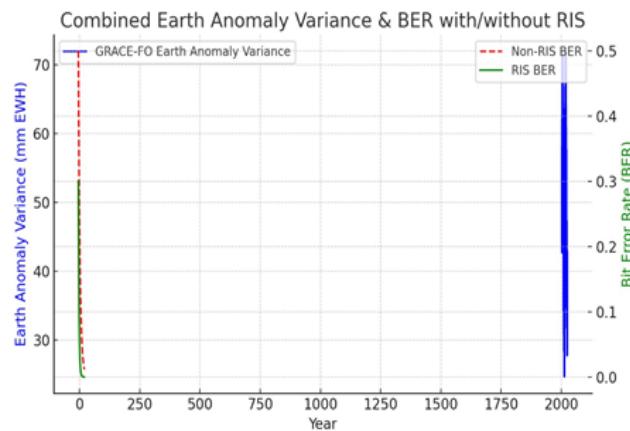

Figure 13: Energy efficiency comparison between RIS -assisted and conventional LEO links

Figure 13 shows the throughput-per-watt metric as a function of SNR. Since RIS is passive, its power consumption is negligible compared to the transmit power. As a result, RIS-assisted links achieve 2-3 times the energy efficiency of traditional systems.

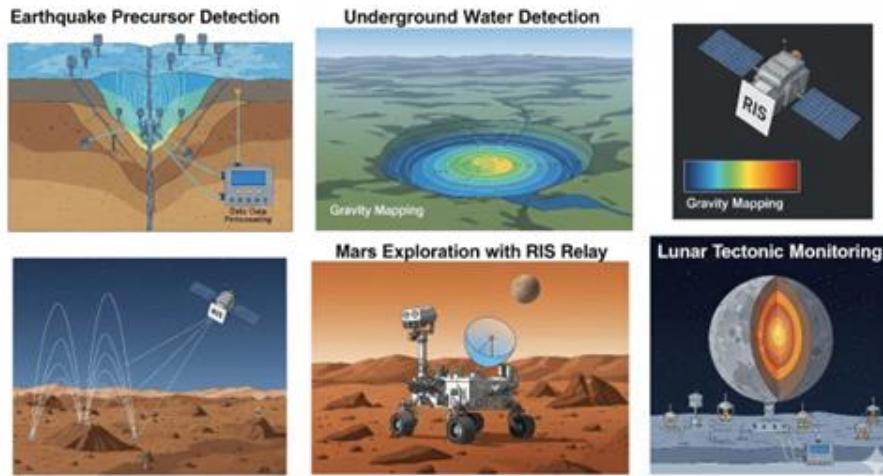
This is especially useful for CubeSats and planetary rovers with limited power budgets, allowing for longer mission durations without sacrificing secure data transfer.

4.6. Integration with Real Earth Dataset

To test the genuine-world appropriateness, the RIS simulation was paired with NASA's GRACE-FO gravity discrepancy dataset. These datasets reveal seasonal redistribution of mass from water and ice, as well as tectonic shifts, leading to weak gravimetric discrepancies. Analysis revealed that Non-RIS links struggled during the low-SNR discrepancy period, resulting in a data interval. The RIS-assisted link maintained continuous, safe transmission, ensuring the integrity of the discrepancy data. RIS with quantum key distribution (QKD) mixed with both high-loyalty and safe data distribution. This dataset-powered verification proves that the RIS framework is not only theoretically strong but also practical for real scientific missions. Yes. Theoretical and practical implications. Theoretically, RIS-assisted channels support creative intervention, beam steering, and inactive profit scaling. However, his practicality is what makes him revolutionary. Unlike active phased arrays, RIS modules are lightweight (thin-film metasurfaces), low-power (passive reflection), and suitable for deployment on cubes and rovers. This makes RIS a major technique for deep-space cubesats, Martian gravity mapping, and safe-meaning anomaly detection. Cooperation between RIS and Quantum Security (QKD) to address growing cybersecurity concerns in space enhances data privacy.

Figure 14: Integration of RIS -assisted transmission with NASA GRACE - FO gravity anomaly datasets

Figure 14 combines gravimetric anomaly signals with simulated RIS and non-RIS transmission reliability. During periods of weak anomalies or low signal strength, non-RIS channels experience high BER and frequent outages. This situation can result in a potential loss of scientific data. In contrast, RIS-assisted links provide continuous, secure transmission, preserving the integrity of anomalies. This result demonstrates how RIS can be effectively used for planetary gravimetry and Earth anomaly detection, ensuring data accuracy and mission resilience.


4.7. Discussion

The path loss of 170 to 200 dB in the KA-band is reduced with RIS-based creative benefits. The ± 500 kHz Doppler shift is minimised through adaptive phase alignment. BER 8 improves the dB margin, enabling reliable quantum sensor transmission. Energy efficiency improves by 2-3 times, which is important for CubeSat missions. RIS ensures continuous discrepancy capture when the Earth is connected to a dataset. Scalability for large RIS surfaces unlocks additional benefits for future planet missions. Overall, the RIS-Assisted Leo Framework combines advanced sensing, such as quantum gravimetry, with safe and efficient communication, making it an essential technique for the next generation of space exploration missions:

- **Potential Applications:** RIS-assisted LEO satellite links with NV-based quantum sensors extend beyond gravimetry. Potential applications can be categorised into planetary exploration, Earth monitoring, space technology, and critical infrastructure.
- **Planetary Exploration and Resource Mapping:** One of the most immediate uses is in planetary gravimetry. NV-based sensors can detect subtle changes in the gravitational field, enabling detailed subsurface mapping. This ability is crucial for:
 - **Mars Missions:** Identifying underground ice reservoirs that are essential for future human colonies.

- **Lunar Resource Mapping:** Finding regolith compositions and hidden lava tubes for possible habitation.
- **Asteroid Prospecting:** Spotting internal density changes to locate areas rich in metals and volatiles.

By using RIS-assisted links, these datasets can be securely sent in near real-time, speeding up mission planning and decision-making (Figure 15).

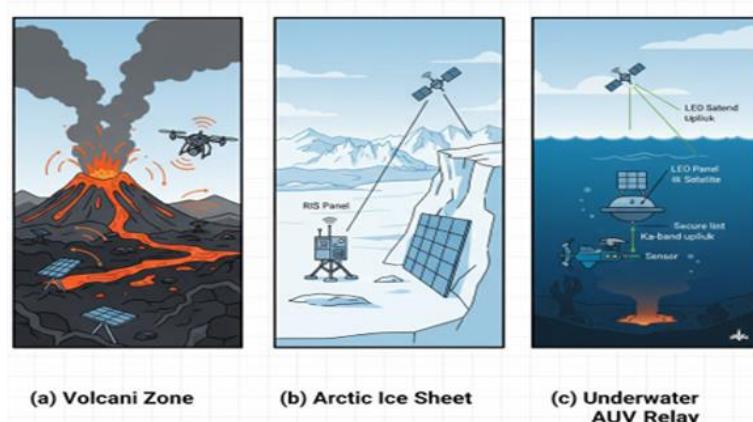


Figure 15: Planetary exploration

4.8. Spaceborne IoT and CubeSat Networks

Miniaturised NV sensors on CubeSats could create distributed networks that continuously monitor planetary gravity anomalies. These constellations would depend on RIS-enhanced intersatellite communication to avoid large antennas and minimise power consumption. Some applications include Interplanetary Data Relay Systems, which allow Mars rovers to communicate with Earth more effectively. -Distributed Gravity Mapping: Using swarms of CubeSats for coordinated gravity surveys. - CubeSat - based Secure IoT: Small satellites serving as secure IoT hubs in harsh environments:

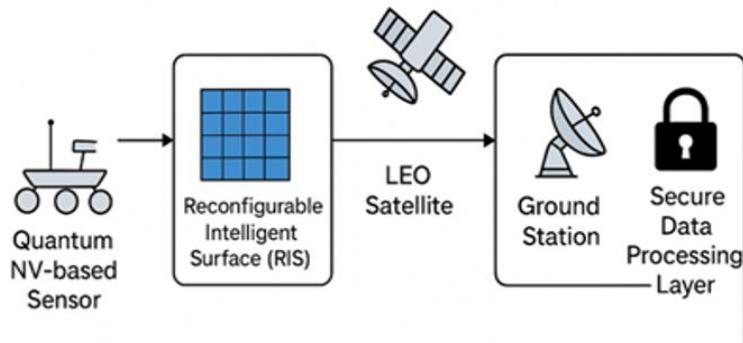

- **Extreme – Environment:** IoT. In addition to planetary uses, RIS-assisted gravity data links can support Earth's extreme environments where traditional communication fails.
- **Volcanoes:** Monitoring magma chamber pressure in real time.
- **Polar Ice Sheets:** Observing glacial movements and finding subglacial lakes.
- **Oceans:** Charting seafloor density changes and undersea resources with autonomous underwater vehicles (AUVs) sending data via LEO (Figure 16).

Figure 16: RIS-assisted IoT in an extreme environment

4.8.1. Defence and Strategic Applications

Quantum gravity data, securely transmitted through RIS-assisted LEO satellites, is crucial for submarine detection, monitoring underground facilities, and mapping resources in contested areas. The built -in security of QKD provides resilience against enemy interception (Figure 17).

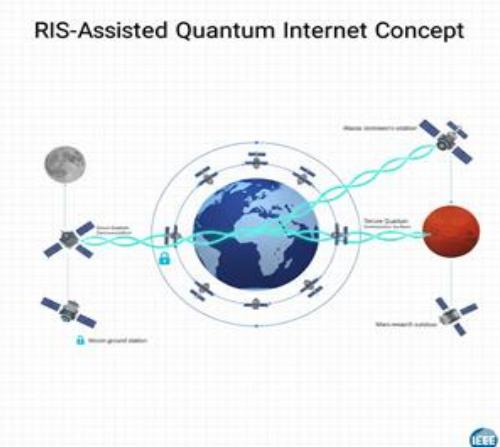
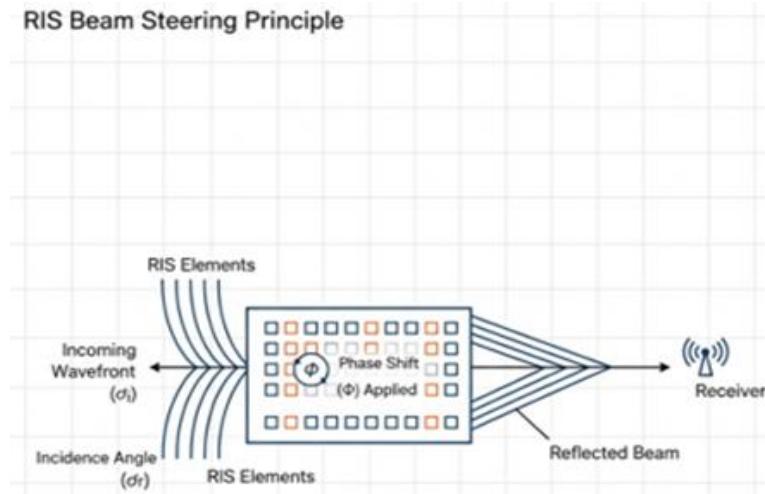


Figure 17: RIS workflow

4.9. Key Contributions


To highlight the innovation and practical impact, the major contributions of this task are as follows:

- A new RIS-assisted Leo Satellite Framework was developed for safe quantum-gravimetric data transmission. This framework addresses the dual challenges of weak quantum signals and high-orbital channel losses.
- Detailed channel modelling was conducted. This included free-space path loss, atmospheric noise, rain fade (ISRO dataset), ionospheric scintillation, and Doppler dynamics to reflect the realistic space-European communication environment.
- RIS adaptation strategies were developed and analysed. These strategies demonstrate how adaptive phase alignment links improve SNR under Doppler tolerance and in extreme, variable orbital conditions.
- Achieved a significant improvement in BER, with an 8 dB increase in link margin, and boosted energy efficiency by 2 to 3 times compared to non -RIS links. This shows that the RIS can work with weak signals while still providing high -quality transmission.
- The framework using the NASA Grace-Pho Gravity discrepancy dataset demonstrates that RIS maintains the integrity of discrepancy data, even in low-SNR and high-luxury environments where traditional systems may experience outages.
- Practical mission relevance highlights the use of RIS on cubes, rovers, and orbital relays. This provides a natural fit for exploring Earth observation for future ISRO/NASA missions and for searching for new planets (Figure 18).

Figure 18: Quantum internet concept

Integrated safety measures introduce QKD and classical encryption layers to protect sensitive scientific data. This approach ensures that communication remains flexible regarding cybersecurity. RIS has become a game-changer, laying the groundwork for the next generation of safe-space communication systems. It shifts communication design from active compensation to RIS, which is inactive, energy-efficient, and environmentally friendly (Figure 19).

Figure 19: RIS beam steering principle

5. Conclusion and Future Scope

The research introduced a novel RIS-Assisted Leo Satellite Communication Framework for safe quantum sensor data transmission in Planetary Gravimetry, addressing the underlying challenges of space-to-earth communication. Study joint channels to evaluate system performance in modelling, RIS adaptation, and dataset -operated simulation in realistic orbital and atmospheric conditions. The results demonstrated that RIS integration increases both the reliability and efficiency of the LEO-based data relay system, establishing its viability for upcoming space missions. From a communication perspective, the inclusion of RIS directly reduced the severe free-space path loss of 170 to 200 dB on the band. It also addressed issues from rain fade and ionospheric skin effects. The simulation highlighted a 15 dB increase in effective link margin, enabling strong connectivity during heavy monsoon rain, as supported by ISRO data. Additionally, the adaptive reflection features of RIS provided dynamic Doppler compensation, adjusting for frequency shifts of up to ± 500 kHz due to orbital speed. These improvements result in high link availability and steady phase coherence, both of which are crucial for quantum gravimetric measurement. On the performance front, the RIS-assisted transmission met the requirement for an 8 dB SNR deficiency, reducing system power consumption and protecting scientific data integrity. The energy efficiency gains of 2 -3 times were especially useful for cubes and rover -based missions, where limited electricity on the ship poses a major challenge. Beyond the simulation, verification with the NASA Grace-Fo Dataset showed that the RIS consistently fills the gap, preventing significant data loss during weak-signal conditions. The implications of this study are beyond the technical matrix.

RIS technology represents a paradigm shift in satellite communication, moving away from traditional approaches that rely entirely on power amplification and large antennas toward intelligent environmental regeneration that leverages passive metasurfaces. This reduces hardware burden and increases scalability. It enables deploying RIS on small satellites, orbital relay stations, and ground-based stations. In addition, integrating quantum-mature protocols such as QKD keeps this architecture a forward-looking solution to the increasing cybersecurity challenges in space missions. In short, the task shows that the RIS-Assisted Leo Satellite Framework for Quantum Sensing may link accuracy to communication flexibility. This presents a transformative opportunity for Earth observation, planetary gravimetry, and future missions. Quantum sensing, RIS -based channel engineering, and safe communication coordination pave the way for a new era of exploration. This era is flexible for energy use, safety, environmental, and orbital uncertainties. Future studies can focus on using RIS in low-power cubesat constellations, combining it with AI-powered adaptive beamforming, and on laboratory verification using physical metasurfaces. ISRO, NASA, and ESA can support RIS by conducting collaborative experiments that translate theoretical ideas into practical applications. This will create the communication infrastructure for the next generation of planetary science missions. The Proposed RIS-Assisted LEO framework is just the beginning of a much larger research and engineering journey, and several future directions can be envisioned.

Figure 20: Quantum satellite link

- **RIS-Equipped Cubesats and Nanosatellites:** RIS panels can be made from lightweight, flexible materials, making them perfect for cubesat-scale deployments. Soon, constellations of RIS-equipped nanosatellites could create an “intelligent orbital fabric,” dynamically shaping communication links for different missions without using large satellite buses.
- **AI-Enhanced RIS Control:** RIS panels in dynamic orbital environments will increasingly rely on AI-driven algorithms. Reinforcement learning and deep neural networks could predict satellite paths, Doppler shifts, and atmospheric changes, enabling real-time optimisation of RIS phase matrices. AI-equipped RIS can also adjust itself during critical mission events, such as solar storms or signal jamming.
- **Laboratory Demonstrations and Field Testing:** Ground-based tests with programmable metasurfaces can simulate satellite uplink and downlink conditions in controlled-noise environments. Smaller laboratory setups can evaluate RIS-enabled communication of NV sensor data and confirm theoretical models. Long-term, sub-orbital or stratospheric balloon missions could serve as precursors to full orbital demonstrations (Figure 20).
- **Quantum-Enhanced Security Integration:** RIS adds strength at the physical layer, while quantum key distribution (QKD) remains an attractive option for secure gravimetric data transmission. Future missions might connect entangled photon sources with RIS-enhanced optical channels. This would reduce photon loss and increase the range of QKD in space. This development could eventually lead to RIS-enabled global quantum internet backbones. In this scenario, gravimetric sensors would be just one of many secure data sources.
- **Collaborative Opportunities with Space Agencies:** A clear way forward is through collaborative demonstration missions with agencies like ISRO, NASA, ESA, and JAXA. Miniaturised RIS panels and NV gravimeters could be part of small payloads for future planetary exploration missions. These demonstrations would prove the concept and accelerate the adoption of RIS technology in mainstream satellite programs.

Acknowledgement: The authors sincerely acknowledge the support and facilities provided by SRM Institute of Science and Technology for carrying out this research.

Data Availability Statement: The datasets generated and analyzed during the current study are available from the corresponding authors upon reasonable request.

Funding Statement: The authors confirm that no external funding or financial support was received for the conduct of this research or the preparation of this manuscript.

Conflicts of Interest Statement: The authors declare that there are no known conflicts of interest that could have influenced the work reported in this paper. The manuscript represents an original contribution, and all sources have been properly cited.

Ethics and Consent Statement: The study was conducted in accordance with established ethical standards. Informed consent was obtained from all participants, and appropriate measures were taken to ensure confidentiality and protect participants' privacy.

References

1. J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” *Rev. Mod. Phys.*, vol. 92, no. 1, p. 015004, 2020.
2. T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, J. Isoya, and J. Wrachtrup, “A subpicotesla diamond magnetometer,” *Physical Review X*, vol. 5, no. 4, p. 041001, 2015.
3. NASA Jet Propulsion Laboratory (JPL), “GRACE-FO Level-2 Monthly Geopotential Spherical Harmonics CSR Release 06.3 (RL06.3),” Physical Oceanography DAAC (PO.DAAC), *Earth Data*, 2023. Available: <https://www.earthdata.nasa.gov/data/catalog/pocloud-gracefo-l2-csr-monthly-0063-6.3> [Accessed by 01/08/2024].
4. NASA PDS Geosciences Node, “GRAIL gravity derived data record (GDR) archive 2016–2023,” *Planetary Data System*, 2023. Available: <https://pds-geosciences.wustl.edu/missions/grail/> [Accessed by 05/08/2024].
5. ITU-R, “Recommendation P.618-14: Propagation data and prediction methods required for the design of Earth–space telecommunication systems,” *Int. Telecommun. Union Recommendations*, 2023. Available: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-14-202308-I!!PDF-E.pdf [Accessed by 10/08/2024].
6. S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, “Satellite-to-ground quantum key distribution,” *Nature*, vol. 549, no. 7670, pp. 43–47, 2017.
7. J. Yin, Y. Cao, L. Yu-Huai, L. Sheng-Kai, L. Zhang, R. Ji-Gang, C. Wen-Qi, L. Wei-Yue, B. Li, H. Dai, L. Guang-Bing, L. Qi-Ming, G. Yun-Hong, Y. Xu, L. Shuang-Lin, L. Feng-Zhi, Y. Ya-Yun, J. Zi-Qing, M. Li, J. Jian-Jun, G. Ren, D. He, Z. Yi-Lin, Z. Xiao-Xiang, N. Wang, X. Chang, Z. Zhen-Cai, L. Nai-Le, C. Yu-Ao, L. Chao-Yang, R. Shu, P. Cheng-Zhi, W. Jian-Yu, and P. Jian-Wei, “Satellite-based entanglement distribution over 1200 kilometres,” *Science*, vol. 356, no. 6343, pp. 1140–1144, 2017.
8. T. Islam, J. S. Sidhu, B. L. Higgins, T. Brougham, T. Vergoossen, D. K. L. Oi, T. Jennewein, and A. Ling, “Finite-resource performance of small-satellite-based quantum key distribution,” *PRX Quantum*, vol. 5, no. 3, p. 030101, 2024.
9. W. U. Khan, E. Lagunas, A. Mahmood, B. M. ElHalawany, S. Chatzinotas, and B. Ottersten, “When RIS meets GEO satellite communications: A new sustainable optimization framework in 6G,” *IEEE 95th Vehicular Technology Conference: (VTC-Spring)*, Helsinki, Finland, 2022.
10. C. E. Worka, F. A. Khan, Q. Z. Ahmed, P. Sureephong, and T. Alade, “Reconfigurable intelligent surface-assisted non-terrestrial networks for 6G: A comprehensive survey,” *Sensors*, vol. 24, no. 21, p. 6958, 2024.
11. A. K. Meshram, S. Kumar, J. Querol, and S. Chatzinotas, “Doppler Effect Mitigation in LEO-Based 5G Non-Terrestrial Networks,” *IEEE GlobeCom Workshops (GC Wkshps)*, Kuala Lumpur, Malaysia, 2023.
12. M. Di Renzo, F. H. Danufane, X. Xi, J. De Rosny, and S. A. Tretyakov, “Analytical modelling of the path-loss for RIS: Anomalous mirror or scatterer?” in *Proc. IEEE SPAWC*, Atlanta, Georgia, United States of America, 2020.
13. S. Aboagye, A. R. Ndjiongue, T. M. N. Ngatched, O. A. Dobre, and H. V. Poor, “RIS-assisted visible light communication systems: A tutorial,” *IEEE Commun. Surveys Tuts.*, vol. 25, no. 1, pp. 251–288, 2023.
14. C. Pan, H. Ren, K. Wang, J. F. Kolb, M. Elkashlan, and M. Chen, “Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions,” *IEEE Commun. Mag.*, vol. 59, no. 6, pp. 14–20, 2021.
15. S. Basharat, S. A. Hassan, H. Pervaiz, A. Mahmood, Z. Ding, and M. Gidlund, “Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks,” *IEEE Wireless Commun.*, vol. 28, no. 6, pp. 184–191, 2021.
16. X. Zhu, W. Chen, Z. Li, Q. Wu, Z. Zhang, and K. Wang, “RIS-aided spatial scattering modulation for mmWave MIMO transmissions,” *IEEE Trans. Commun.*, vol. 71, no. 12, pp. 7378–7392, 2023.
17. Q. Bie, Z. Liang, Y. Liu, Q. Wu, X. Zhao, and X. Y. Zhang, “User association for reconfigurable intelligent surface aided cell-free networks,” *IEEE Trans. Veh. Technol.*, vol. 72, no. 11, pp. 14456–14467, 2023.
18. M. Ahmed, A. A. Soofi, S. Raza, F. Khan, S. Ahmad, and W. U. Khan, “Advancements in RIS-assisted UAVs for empowering multi-access edge computing: A survey,” *IEEE Internet Things J.*, vol. 12, no. 6, pp. 6325–6346, 2025.
19. Z. Ali, M. Asif, W. U. Khan, A. Elfikky, A. Ihsan, and M. Ahmed, “Hybrid optimization for NOMA-based transmissive RIS-mounted UAV networks,” *IEEE Trans. Consum. Electron.*, vol. 71, no. 2, pp. 3740–3752, 2025.
20. M. Ahmed, A. Wahid, W. U. Khan, F. Khan, A. Ihsan, and Z. Ali, “A survey on RIS advances in terahertz communications: Emerging paradigms and research frontiers,” *IEEE Access*, vol. 12, no. 10, pp. 173867–173901, 2024.
21. G. Mahalakshmi, A. Arivunambi, K. K. Devi, and D. Muthukumaran, “IFKC and optimized DeTraC deep convolutional neural network-based location prediction in mobile IoT,” *IETE J. Res.*, vol. 71, no. 1, pp. 44–52, 2025.
22. M. Asif, X. Bao, A. Ranjha, M. Ahmed, W. U. Khan, and S. Rani, “Leveraging RIS in consumer-centric 6G networks: Efficient resource allocation in RSMA-based SWIPT systems under hardware impairments,” *IEEE Trans. Consum. Electron.*, vol. 71, no. 2, pp. 4235–4247, 2024.

23. Y. Cui, F. Liu, X. Jing, and J. Mu, "Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges," *IEEE Netw.*, vol. 35, no. 5, pp. 158–167, 2021.
24. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, and T. X. Han, "A survey on fundamental limits of integrated sensing and communication," *IEEE Commun. Surveys Tuts.*, vol. 24, no. 2, pp. 994–1034, 2022.
25. N. González-Prelcic, M. F. Keskin, O. Kaltiokallio, M. Valkama, D. Dardari, and X. Shen, "The integrated sensing and communication revolution for 6G: Vision, techniques, and applications," *Proc. IEEE*, vol. 112, no. 7, pp. 676–723, 2024.
26. A. Kaushik, R. Singh, M. Li, H. Luo, S. Dayarathna, and R. Senanayake, "Integrated sensing and communications for IoT: Synergies with key 6G technology enablers," *IEEE IoT Mag.*, vol. 7, no. 5, pp. 136–143, 2024.
27. A. Magbool, V. Kumar, Q. Wu, M. D. Renzo, and M. F. Flanagan, "A survey on integrated sensing and communication with intelligent metasurfaces: Trends, challenges, and opportunities," in *IEEE Open Journal of the Communications Society*, vol. 6, no. 8, pp. 7270–7318, 2025.
28. D. Wen, Y. Zhou, X. Li, Y. Shi, K. Huang, and K. B. Letaief, "A survey on integrated sensing, communication, and computation," *IEEE Commun. Surveys Tuts.*, vol. 27, no. 5, pp. 3058–3098, 2024.
29. K. Qu, J. Ye, X. Li, and S. Guo, "Privacy and security in ubiquitous integrated sensing and communication: Threats, challenges, and future directions," *IEEE IoT Mag.*, vol. 7, no. 4, pp. 52–58, 2024.
30. W. Jiang, Q. Zhou, J. He, M. A. Habibi, S. Melnyk, and M. El-Absi, "Terahertz communications and sensing for 6G and beyond: A comprehensive review," *IEEE Commun. Surveys Tuts.*, vol. 26, no. 4, pp. 2326–2381, 2024.
31. M. Ahmed, S. Raza, A. A. Soofi, F. Khan, W. U. Khan, F. Xu, S. Chatzinotas, O. A. Dobre, and Z. Han, "A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges," *Comput. Sci. Rev.*, vol. 54, no. 11, p. 100668, 2024.
32. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, and R. Schober, "Active RIS vs. Passive RIS: Which will prevail in 6G?" *IEEE Trans. Commun.*, vol. 71, no. 3, pp. 1707–1725, 2023.
33. R. Schroeder, J. He, and M. Juntti, "Passive RIS vs. Hybrid RIS: A Comparative Study on Channel Estimation," *IEEE 93rd Vehicular Technology Conference (VTC-Spring)*, Helsinki, Finland, 2021.
34. M. Di Renzo, F. H. Danufane, and S. Tretyakov, "Communication models for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization," *Proc. IEEE*, vol. 110, no. 9, pp. 1164–1209, 2022.
35. M. Najafi, V. Jamali, R. Schober, and H. V. Poor, "Physics-based modelling and scalable optimization of large intelligent reflecting surfaces," *IEEE Trans. Commun.*, vol. 69, no. 4, pp. 2673–2691, 2021.
36. M. Jian, G. C. Alexandropoulos, E. Basar, C. Huang, R. Liu, and Y. Liu, "Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques," *Intell. Converg. Netw.*, vol. 3, no. 1, pp. 1–32, 2022.
37. Y. Guo, Y. Liu, Q. Wu, Q. Shi, and Y. Zhao, "Enhanced secure communication via novel double-faced active RIS," *IEEE Trans. Commun.*, vol. 71, no. 6, pp. 3497–3512, 2023.
38. M. Ahmed, S. Raza, A. A. Soofi, F. Khan, W. U. Khan, and S. Z. U. Abideen, "Active reconfigurable intelligent surfaces: Expanding the frontiers of wireless communication—A survey," *IEEE Commun. Surveys Tuts.*, vol. 27, no. 2, pp. 839–869, 2025.
39. W. U. Khan, A. Mahmood, M. A. Jamshed, E. Lagunas, M. Ahmed, and S. Chatzinotas, "Beyond diagonal RIS for 6G non-terrestrial networks: Potentials and challenges," *IEEE Netw.*, vol. 39, no. 1, pp. 80–89, 2025.